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Abstract

China and Russia are major agricultural countries with abundant agricultural resources, holding important 
global agricultural trade market positions. While the scale of China-Russia agricultural trade has maintained 
rapid growth, the embodied carbon emissions from agricultural products have also increased. This article 
first uses input-output data to construct a multi-regional input-output model under a total trade accounting 
method to calculate the carbon emission coefficients, trade value-added, and embodied carbon emissions of 
three categories of agricultural products traded between China and Russia from 2009 to 2019. Our results 
show that, from an industry perspective, Category C3 agricultural products have the highest carbon emission 
coefficients; Category C1 agricultural products have the highest export value-added. From the standpoint 
of imports and exports, Russia’s export value-added to China has proliferated in recent years and is slightly 
higher than that of Chinese exports to Russia; the embodied carbon emissions from Chinese agricultural 
products are higher than those from Chinese exports to Russia. We further examined the impact of trade 
scale, trade structure, and carbon emission intensity on embodied carbon, finding that these three factors have 
heterogeneous effects on the embodied carbon of agricultural trade for different industries and countries.

Keywords: China-Russia; agricultural trade; embodied carbon measurement; LMDI index decomposition 
model; impact factor analysis 

 Introduction

As the ties between China and Russia deepen, their 
collaboration in trade, particularly in agriculture, has 
witnessed significant growth [1]. Both nations, being 
major players in the global agricultural market, have 
strengthened their trade relations due to factors like their 
entry into the World Trade Organization, the initiation 
of the Belt and Road Initiative, and economic sanctions 
imposed by Western countries on Russia [2]. This has 
led to a substantial increase in bilateral agricultural 

trade, reaching a total value of 5.5 billion USD in 2020, 
marking a sevenfold rise since 20011. China has emerged 
as the largest importer of Russian agricultural products, 
while Russia holds the third position among importers of 
Chinese agricultural goods [3].

The traded agricultural products are diverse, with China 
exporting processed items like vegetables, fruits, fish, 
crustaceans, and mollusks to Russia, while Russia exports 

1 https://www.statista.com/statistics/1003171/russia-value-
-of-trade-in-goods-with-china/
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frozen fish, plant wood, soybeans, and edible oils to China. 
This comprehensive range of traded products showcases 
strong complementarity, positioning both nations as crucial 
partners in agricultural trade cooperation.

Amidst global economic growth, heightened 
environmental awareness has led to a focus on reducing 
carbon emissions to combat climate change [4]. Despite 
agriculture traditionally being considered a low-
carbon industry, the IPCC assessment report highlights 
that carbon emissions from agricultural product 
trade contribute significantly, accounting for 23% of 
global emissions2. As Sino-Russian agricultural trade 
expands, the associated hidden carbon emissions and 
international carbon transfers have also increased [5]. 
This trend poses challenges such as the imposition of 
green barriers by developed nations under the guise of 
environmental protection, potentially hindering foreign 
trade development and impacting national economies [6, 
7]. Therefore, this study aims to analyze and understand 
the hidden carbon emissions in Sino-Russian agricultural 
trade, calculate these emissions, and identify influencing 
factors to propose targeted carbon reduction strategies.

In the era of economic globalization, international 
trade cooperation intensifies, leading to a rise in cross-
border intermediate goods [8]. Conventional statistical 
methods for international trade face challenges such as 
double counting of trade value and neglect of intermediate 
products [9, 10]. To address these issues and accurately 
estimate hidden carbon emissions, this study integrates 
the trade value-added method into a multi-regional input-
output model, creating a bilateral trade hidden carbon 
model. This approach enhances the accuracy of results 
by avoiding the repetition of total carbon emissions and 
clarifying carbon emission responsibilities. Existing 
studies on embodied carbon emissions primarily focus 
on entire industries, lacking specific recommendations 
for targeted strategies [11]. This study, however, takes a 
sectoral perspective on agricultural products, leveraging 
China’s status as a major agricultural nation and Russia’s 
role in China’s agricultural trade. By measuring the scale 
and proportion of hidden carbon emissions in Sino-
Russian agricultural trade and exploring influencing 
factors, this research contributes to the theoretical 
development of this field.

Literature Review

In terms of methods for calculating trade-embodied 
carbon, there are primarily two categories: one involves 
recording the entire lifecycle process of a product from 
production to finished goods, tracing the carbon emissions 
footprint, and subsequently calculating the carbon 
emissions, known as the Life Cycle Assessment (LCA) 
method [12-15]. The other category involves calculating 
the carbon emissions of a product during the production 

2 https://news.climate.columbia.edu/2022/09/19/the-growing-
-awareness-and-prominence-of-environmental-sustainability/

process based on the input-output relationships of different 
economic sectors. This method is called the Input-Output 
Analysis, and input-output models include single-region 
and multi-region input-output models [16-18]. With the 
clarification of the international division of labor, the total 
trade accounting method under multi-region input-output 
models has gradually become the primary approach for 
studying embodied carbon emissions.

When decomposing the influencing factors of embodied 
carbon, scholars commonly utilize decomposition models 
such as the Structural Decomposition Analysis (SDA) 
and the Logarithmic Mean Divisia Index (LMDI) model. 
The LMDI model is currently the most widely adopted 
decomposition method compared to the SDA structural 
decomposition model. It allows for a comprehensive analysis 
of the influencing factors of embodied carbon emissions 
from the perspectives of scale, structure, and intensity [19]. 
Meng et al. [20] constructed an LMDI model to decompose 
the specific impact structure of carbon emissions. Their 
analysis revealed that economic growth propels the 
growth of embodied carbon, and a decrease in energy 
intensity can effectively reduce carbon emissions. The 
study recommended a rational response to the relationship 
between economic development and carbon emissions, 
advocating for adjustments to the energy structure.

Material and Methods 

Date and Sectoral Division of Agricultural Products

This paper focuses on China-Russia agricultural 
trade, necessitating standardized industry categorizations 
due to variations in input-output tables and energy 
consumption statistics. The study primarily relies on 
Asian Development Bank (ADB) data supplemented by 
the World Input-Output Database (WIOD), classifying 
the entire industry into 35 sectors. The study aligns input-
output, energy consumption, and trade data classifications 
following adjustment methods proposed by Chen Si et al. 
[21] and Liu Chang et al. [22]. The study consolidates 
eight specific sectors into three major agricultural product 
industries (C1, C2, and C3) to address discrepancies 
between customs HS codes and input-output categories, 
enhancing clarity and consistency (see Table 1).

Research Methodology

Direct Carbon Emission Factor 
for Agricultural Products

This paper utilizes the reference methods and parameters 
provided by the IPCC Guidelines for National Greenhouse 
Gas Inventories and, at the same time, draws on the 
concept and calculation method of the direct consumption 
coefficient in the input-output coefficients to propose the 
concept of the natural carbon emission coefficient [23-
25]. It is expressed as the carbon dioxide emission from 
the energy consumed for each unit of product produced. 
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Calculate the direct carbon emission coefficient of an 
industry i: the carbon dioxide emissions directly caused by 
the production of one unit of product in industry i, denoted 
as , is calculated by the following formula: 

                             (1)

Where  denotes the carbon emissions 
generated by energy consumption in the manufacturing 
process of products in industry i, and gi is the total output 
value of that industry; θi is the energy consumption 
coefficient of industry i, and h_i is the actual energy 
consumption of industry i. 

When calculating energy consumption intensity (θ), 
we adhere to the 2006 IPCC Guidelines, using data from 
the Energy Statistical Yearbook for eight types of energy 
in the agricultural production process. We focus on direct 
energy consumption, excluding electric power, and 
compute carbon emission coefficients using the Energy 
Carbon Emission Factor (ECEF) formula from the IPCC 
2006 version of Energy (Chapter 6).

      (2)

Where  is the CO2 emission factor (energy carbon 
emission factor) for a particular energy source k.  

does China’s 2018 Energy Statistical Yearbook express 
the average single energy heat generation.  the value 
of the carbon emission factor provided by the IPCC 
expresses the amount of carbon contained in one unit 
of energy heat.  is the oxidation rate of the carbon 
factor when the energy source is burned. 

Calculation of Value Added in Agricultural Trade Based 
on the Gross Trade Accounting Approach

Based on the entire trade accounting method, this 
paper calculates the values of DVA and RDV of different 
agricultural industries in China and Russia and sums them 
up to derive the export value added of three agricultural 
products in China and Russia as follows [26-29].

According to the multiregional input-output table, the 
tripartite input-output model composed of China, Russia, 
and the third country can be expressed as:

    (3)

Where subscripts c, u, and t denote China, Russia, and 
third countries, respectively; A is the input coefficient; 
X denotes output; and Y is the final demand product. 

Table 1. Adjusted sectoral classification of agricultural products

code Adjusted sectoral classification 
of agricultural products

Classification of agricultural products 
under the input-output table

Corresponds to Customs Export Chapter 
24 Agricultural Products (01-24)

C1 Agriculture Agriculture 06,07,08,09,10,12,15
C1 Livestock Livestock 01
C1 Forestry Forestry 13,14,23,20
C1 Fisheries Fisheries 03
C2 Food Industry Food Processing Manufacturing 17,04,21,19

C2 Beverage & Alcohol & Tobacco 
Industry Beverage and Alcohol Manufacturing 18,22

C2 Tobacco Tobacco Manufacturing 24
C3 Plant & Wood Industry Plant and Wood Manufacturing 06,13,14,20

Source: Based on input-output tables and customs product tables. 

Table 2. Implications of GTAA decomposition

Component Symbol Decomposition Content Symbol Code

Domestic value added absorbed abroad DVA Domestic value added of final 
product exports

DVA-FIN
DVA-INT

DVA-INTREX

T1
T2

T3+T4+T5
Domestic value added returned to and 

absorbed by country RDV Direct intermediate exports absorbed by 
importing countries / T6+T7+T8

Value added abroad FVA

Direct intermediate exports resulting from 
production in importing country absorbed 

by other countries

MVA
OVA

T11+T12
T14+T15

Purely double-counted components PDC / DDC
FDC

T9+T10
T13+T16
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According to the WWZ (total trade accounting method) 
decomposition formula, the total exports from China to 
Russia are decomposed into the following 16 components, 
and the same is true for Russian exports to China. In turn, 
the vector T1-T16 can be expressed as:

                   (4)

The meaning of its specific decomposition is shown 
in Table 2.

Measurement of Embodied Carbon Emissions

Based on the measurement and decomposition 
methodology of the total trade accounting method above, 
the embodied carbon emissions from country C’s exports 
to country U are divided into three components: 

Carbon emissions from value added in the exporting 
country are expressed using the product of  and  
with the whole carbon emission factor of the exporting 
country (the product of the direct carbon emission factor 
and the Leontief inverse matrix).

                    (5)

To accurately measure embodied carbon emissions in 
China-Russia agricultural trade, we follow the approach 
suggested by Gao et al. [30] and Dissanayake et al. 
[31]. This involves multiplying the full carbon emission 
coefficients with the value added. We calculate complete 
carbon emission coefficients for three agricultural product 
types in China and Russia, combining direct emission 
coefficients with World Input-Output Database data. 
Multiplying these coefficients by the trade’s value added 
provides the data for embodied carbon emissions in the 
China-Russia agricultural trade.

Decomposition Analysis of Implicit Carbon Emission 
Influencing Factor Effects of China-Russia Agricultural 

Products Trade Based on LMDI Modeling

Many scholars explore the impact of embodied 
carbon emissions from the scale effect [32, 33], structural 
effect [34, 35], and intensity influence of products [36, 
37]. Accordingly, this paper mainly explores the impact 
of embodied carbon emissions from three aspects: the 
scale of China-Russia agricultural trade, trade structure, 
and technological progress. 
(1)  Trade scale: The trade scale effect in agriculture, under 

constant structure and technology, shows that increased 
trade scale leads to higher embodied carbon emissions. 
This study explores this by examining the value added 
of agricultural product industries in China and Russia in 
relation to changes in embodied carbon emissions [38]. 

(2)  Trade structure: The trade structure effect highlights 
that, with a constant scale of agricultural product 
trade, a higher proportion of product trade structure 
corresponds to increased embodied carbon emissions. 
This study examines the balance of value-added scale 
for agricultural products by industry in China and 
Russia [39].

(3)  Technological progress: The intensity effect, linked 
to energy consumption and utilization, influences 
embodied carbon emissions. Technological progress 
enhances energy efficiency, lowering the complete 
carbon emission coefficient of agricultural products 
and reducing embodied carbon emissions [40]. This 
study uses China’s and Russia’s emission coefficients 
to explore the correlation between intensity effects 
and embodied carbon emissions.
This paper adopts the LMDI model to decompose and 

analyze the factors affecting embodied carbon emissions 
and further examines the main factors affecting the change 
of embodied carbon in the bilateral trade of agricultural 
products between China and Russia [41, 42].

           (5)

In equation (5): EC denotes the total embodied carbon 
emissions from trade in a country or region; E denotes 
the whole scale of transfers out of region s;  denotes the 
scale of transfers out of sector i in region s;  denotes the 
carbon emissions from sector i in region s;  denotes the 
proportion of the size of sector i to the total size in region s; 
and  denotes the embodied carbon intensity of sector i in 
region s. The total scale of transfer is still referred to as the 
decomposition part under the total trade accounting method.

The difference in trade-embodied carbon emission 
transfers between the two years based on the LMDI can 
be decomposed as follows:

   (6)

   (7)

   (8)

   (9)

    (10)

where  denotes the difference in embodied carbon 
emissions between two-year segments;  denotes the 
amount of change in embodied carbon emissions pulled 
by the scale effect;  denotes the amount of change in 
embodied carbon emissions pulled by the structural effect; 

 denotes the amount of change in embodied carbon 
emissions pulled by the intensity effect;  denotes the 
embodied carbon emissions of sector i in year t;  denotes 
the embodied carbon emissions of sector i in the embodied 
carbon emissions in the base year; E(t) denotes the scale of 
transfer out in year t; E(0) denotes the scale of transfer out in 
the base year;  denotes the share of the scale of transfer 
out in year t of sector i;  denotes the share of the scale 
of transfer out in the base year of sector i;  denotes the 
embodied carbon emission intensity in year t of sector i; 

 denotes the embodied carbon emission intensity in the 
base year of sector i, which is expressed by the total carbon 
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emission coefficient. In this paper, when analyzing the 
decomposition of the three types of agricultural products’ 
impact factors, the scale of redeployment used is based 
on the scale of agricultural products’ value added. Since 
2009 is the base period calculation year, the decomposition 
results of each part start from 2010.

Results and Discussion

Direct Carbon Emission Factor for Agricultural Products

This paper measures the carbon emission coefficients 
of different energy sources using Model (1). According 
to the energy index data in Table 3, the carbon emission 
coefficients of kerosene, diesel oil, and fuel oil are high, 
above 3.0, and fuel oil reaches more than 3.20, while the 
carbon emission coefficient of coal is the smallest, typically 
less than 2.0; and the carbon emission coefficients of coke, 
gasoline, and natural gas are in the range of 2.0-3.0.

This study relies on energy carbon emission data, 
industry-specific energy consumption, and the gross output 
value of agricultural products by sector to determine 
the direct carbon emission coefficients of agricultural 
products by sector. The carbon emission coefficients for 

Russian agricultural products are derived from the Russian 
Statistical Yearbook, utilizing information on gross output 
value and energy consumption. In cases where output 
value and energy consumption data are missing for specific 
years, calculations are based on forecasts related to the 
input-output scale, exports, and outputs of agricultural 
products in China and Russia (refer to Tables 4). Notably, 
C1 agricultural products exhibit the second-highest 
coefficients, ranging between 0.265-0.335 and 0.200-
1.822, compared to C3 agricultural products. C2 food, 
beverage, alcohol, and tobacco industries display the lowest 
coefficients, indicating lower CO2 emissions in the direct 
production process for this category, with values ranging 
from 0.056 to 0.2138 and 0.0138 to 0.141, respectively.

Analysis of Embodied Carbon Emissions from 
China-Russia Agricultural Trade

Analysis of Total Embodied Carbon Emissions from 
China-Russia Agricultural Trade

Figure 1 illustrates the fluctuation in China-Russia 
agricultural trade’s total embodied carbon volume 
(2009-2019). China’s embodied carbon emissions from 
agricultural exports to Russia varied between 2.06 million 

Table 3. Various energy consumption coefficients

Energy type NCV (kJ/M3 ) CEF (kJ/106 kJ) COF Energy Carbon 
Emission Factor θk

Coal 20908 26 4 0 93 1 8822
Coke 28435 29.5 0.93 2.8604

Gasoline 43070 19.1 0.98 2.9560
Kerosene 43070 19.5 0.99 3.0487
Diesel oil 42652 20.2 0.98 3.0959
Fuel Oil 41816 21.1 0.99 3.2028

Natural gas 38931 15.3 0.99 2.1622

Table 4. Direct carbon emission coefficient (in tons)

Year
Direct  carbon  emission  coefficient  of Classified  agricultural  

products  in  China( unit: million tons/billion dollars)
Direct carbon emission coefficient of Classified agricultural 

products in Russia (Unit: tons/billion dollars)
C1 C2 C3 C1 C2 C3

2009 0.2963 0.2138 11.8912 0.2007 0.0721 19.8286
2010 0.2838 0.2220 12.0186 0.2175 0.0912 20.1064
2011 0.2653 0.1768 10.2191 0.2242 0.0638 16.6291
2012 0.2662 0.1403 9.3383 0.3056 0.0532 9.5556
2013 0.2661 0.1314 8.4638 0.1563 0.0503 8.5551
2014 0.2772 0.1074 8.0759 0.3596 0.0300 10.3623
2015 0.3036 0.0928 7.9889 0.4203 0.0277 11.1507
2016 0.3217 0.0875 7.6133 0.4188 0.0203 10.9432
2017 0.3253 0.0720 7.3620 0.5089 0.0172 11.3277
2018 0.3357 0.0679 7.0159 1.8227 0.1408 12.9761
2019 0.2943 0.0559 6.7843 1.7862 0.0704 9.8695
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and 4.88 million tons. Emissions increased from 2009 to 
2013, declined to 2.07 million tons from 2013 to 2016, and 
fluctuated after that, reaching 3.05 million tons in 2019 (a 
24.9% YoY increase). Russia’s emissions to China ranged 
from 2.4 million to 5.19 million tons, peaking in 2011. 
Stability followed until a sharp increase to 4.74 million 
tons in 2018 (a 58.8% YoY rise), emphasizing the need 
for an improved trade environment. 

Classification and Analysis of Embodied Carbon 
Emissions from Agricultural Products Trade Between 

China and Russia

Table 5 shows the changes in embodied carbon 
emissions of the three categories of agricultural products 
exported from China and Russia in 2009-2019, and 
through the statistical values in the table, we can 
intuitively find that in the trade of the three categories 
of agricultural products, due to the characteristics of the 
production of the products, the C3 category of agricultural 

products produces the most embodied carbon emissions, 
followed by the C1 category of traditional agricultural 
products, and the C2 category of farm products, the 
natural gas, gasoline and other energy consumption 
inputs in the production process, C2 agrarian products, 
in the production process of natural gas, gasoline, coal 
and other energy consumption is low, resulting in its 
own direct carbon emission coefficient is low, as well as 
in the trade volume and the scale of trade value added 
generated by China and Russia accounted for a small 
proportion, so this category of agricultural products in 
the three categories of agricultural products of the lowest 
embodied carbon emissions. 

Summary Analysis

The analysis of embodied carbon emissions from 
China-Russia agricultural trade reveals distinctive trends. 
China’s exports to Russia initially increase, then decrease, 
while Russia’s exports to China show a reduction 

Table 5. Embodied carbon emissions from China-Russia classified agricultural exports (in tons)

Year
China-Russia embodied carbon in three categories of 

agricultural products
Russia-China embodied carbon in three categories of 

agricultural products
C1 C2 C3 C1 C2 C3

2009 34.21 10.99 231.7 16.36 0.77 327.24
2010 35.08 13.4 322.41 18.4 1.17 490.85
2011 32.78 13.19 356.09 21.04 0.84 497.01
2012 17.04 9.87 441.61 13.06 0.76 237.53
2013 25.17 10.22 452.29 9.75 0.88 230.17
2014 12.94 9.68 414.49 10 0.53 340.81
2015 10 76 6 99 255 82 14 62 0 58 288 78
2016 9.55 6.51 190.78 10.7 0.29 202.43
2017 14.01 7.24 247.3 20.97 0.41 277.41
2018 9.04 3.27 216.82 154 13.61 306.82
2019 31.56 3.48 270.22 132.26 5.14 219.68

Source: Based on the embodied carbon emissions formula.

Fig. 1. Embodied Carbon Emissions from Overall Agricultural Trade between Russia and China (in tons)
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followed by an increase. Overall, Russian exports exhibit 
slightly higher carbon emissions.

In sub-sectors, C3 plant and timber products, with 
higher energy consumption, lead to significant carbon 
emissions, topping the list. Traditional C1 agrarian 
products, despite high trade turnover, rank second due 
to lower energy consumption. C2 products follow with 
minor carbon emissions.

Trends in embodied carbon correlate with shifts in 
overall trade volume, influenced by key events like the 
2008 financial crisis, Russia’s WTO accession in 2012, 
the “Belt and Road” initiative in 2013, Western sanctions 
in 2014, and U.S.-China trade relations in 2018. Critical 
change nodes include the 2008 financial crisis, Russia’s 
WTO accession in 2012, the “Belt and Road” initiative 
in 2013, Western sanctions in 2014, U.S.-China trade 
friction in 2018, and trade fluctuations from the Russian-
Ukrainian conflict in 2022.

Further Analysis: Decomposition Analysis of Factors 
Affecting Embodied Carbon Emissions from 

China-Russia Agricultural Trade 

Analysis of Implicit Carbon Decomposition in China’s 
Classified Agricultural Exports to Russia

(1)  Trade scale: C1 product emissions from China 
to Russia initially decrease then increase, closely 
tied to trade scale changes. C2 emissions follow 
the same pattern as trade scales, decreasing with 
reduced trade. C3 emissions correlate positively with 
scale but decrease from 2014 to 2018 as the scale 
drops. However, C3’s positive impact on emissions 
diminishes as the scale decreases.

(2)  Structural effects: C1’s structural changes increased 
emissions after 2017. C2’s primarily positive 
structural effect increases emissions, turning negative 

after 2018. C3’s structural effect initially promotes 
emissions, then turns negative, driving reduction.

(3)  Intensity effect: C1’s low energy efficiency increased 
emissions from 2014-2018, improving in 2019. C2 
and C3 show consistently harmful intensity effects 
from 2010-2019, indicating that progress in energy 
efficiency drives emission reduction. Table 6 shows 
the specific results.

Analysis of Implicit Carbon Decomposition in Russia’s 
Classified Agricultural Exports to China

(1)  C1 product emissions to China from Russia had 
varying scale effects, positive in 2010-2011 and 2017-
2018 but negative in 2019. C2 emissions had minimal 
and steady scale effects, peaking in 2017. C3 scale 
effects fluctuated, causing emission growth in 2010-
2011 and 2017-2018 but a decline in 2019.

(2)  C1 structural effects were adverse in 2010-2015, 
turning positive in 2019. C2 had a positive structural 
effect in 2010-2015, turning negative in 2017-2019, 
aligning with emission decline. C3 showed positive 
structural effects in 2010-2015, turning negative in 
2017-2019, consistent with emission reduction. The 
structural effect of C3 was positive in 2010-2016, 
turning significantly negative in 2017-2018, especially 
in 2018, and becoming positive again in 2019.

(3)  C1 intensity effects were adverse in 2010-2014, 
turning positive after 2015, leading to increased 
emissions. Improved energy efficiency in 2019 
resulted in a negative intensity effect and emission 
reduction. C2 consistently had a negative intensity 
effect, significantly reducing emissions, especially in 
2018-2019. C3 had a negative intensity effect in 2011-
2013, turning positive in 2014-2018, but became 
negative again in 2019, the main factor in emission 
reduction. Table 7 shows the specific results.

Table 6. Results of embodied carbon decomposition of China’s exports of three types of agricultural products to Russia (in tons)

Type decomposition of effect 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

C1

Embodied carbon credits 0.87 -2.3 -15.7 5 8.14 -12.2 3 -2.18 -1.21 4.46 -4.97 22.52
Scale effect 4.76 3.9 -5.33 4.09 -2.19 -2.61 -1.12 3.93 -5.95 9.15

Structural effect -1.68 -3.08 -10.9 3 4.54 -10.8 0 -0.11 -0.75 0.05 0.72 15.21
Intensity effect -2.21 -3.12 0.51 -0.49 0.76 0.54 0.66 0.48 0.26 -1.84

C2

Embodied carbon credits 2.41 -0.21 -3.32 0.35 -0.54 -2.69 -0.49 0.73 -3.98 0.22
Scale effect 1.67 1.53 -2.54 1.97 -1.19 -1.82 -0.75 2.32 -3.36 1.71

Structural effect 0.04 0.93 2.04 -1.03 2.57 0.12 0.43 0.1 -0.74 -1.44
Intensity effect 0.7 -2.67 -2.82 -0.59 -1.92 -0.99 -0.17 -1.68 -0.62 -0.82

C3

Embodied carbon credits 90.71 33.69 85.52 10.68 -37.8 0 -158. 67 -65.0 4 56.52 -30.4 8 53.4
Scale effect 37.71 39 -88.1 87.67 -51.6 -72.5 -24.5 73.58 -121. 58 123.1

Structural effect 67.12 39.13 199.4 -43.65 41.46 -12.5 -34.1 -13.9 9 97.74 -66.3

Intensity effect -14.1 3 -44.45 25.8 -33.34 -27.6 7 -73.59 -6.36 -3.07 -6.64 -3.41

Source: Calculations based on the LMDI decomposition method
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Table 7. Results of embodied carbon decomposition of Russian exports of three types of agricultural products to China (in tons)

Type decomposition of effect 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

C1

Embodied carbon credits 0.87 -2.30 -15.7 5 8.14 -12.2 3 -2.18 -1.21 4.46 -4.97 22.52
Scale effect 4.76 3.90 -5.33 4.09 -2.19 -2.61 -1.12 3.93 -5.95 9.15

Structural effect -1.68 -3.08 -10.9 3 4.54 -10.80 -0.11 -0.75 0.05 0.72 15.21
Intensity effect -2.21 -3.12 0.51 -0.49 0.76 0.54 0.66 0.48 0.26 -1.84

C2

Embodied carbon credits 2.41 -0.21 -3.32 0.35 -0.54 -2.69 -0.49 0.73 -3.98 0.22
Scale effect 1.67 1.53 -2.54 1.97 -1.19 -1.82 -0.75 2.32 -2.62 1.71

Structural effect 0.04 0.93 2.04 -1.03 2.57 0.12 0.43 0.10 -0.74 -1.44
Intensity effect 0.70 -2.67 -2.82 -0.59 -1.92 -0.99 -0.17 -1.68 -0.62 -0.82

C3

Embodied carbon credits 90.71 33.69 85.52 10.68 -37.80 -158. 67 -65.04 56.52 -30.48 53.40
Scale effect 37.71 39.00 -88.10 87.67 -51.60 -72.50 -24.55 73.58 -121. 58 123.15

Structural effect 67.12 39.13 199.42 -43.65 41.46 -12.58 -34.13 -13.9 9 97.74 -66.33
Intensity effect -14.13 -44.45 -25.80 -33.34 -27.67 -73.59 -6.36 -3.07 -6.64 -3.41

Source: Calculations based on the LMDI decomposition method

Conclusions

Utilizing input-output data, a multi-regional model 
computes carbon emission coefficients, trade value-added, 
and embodied carbon emissions for three China-Russia 
agricultural product categories (C1, C2, C3) from 2009 
to 2019. Findings reveal: (1) C3 has the highest carbon 
coefficients, followed by C1 and C2. (2) Despite high 
carbon coefficients for C3, Russian agricultural exports 
to China surpass China’s in value-added, with C1 leading, 
followed by C2 and C3. (3) Russia’s embodied carbon 
emissions to China exceed China’s to Russia, showing a 
declining trend for China and fluctuations followed by an 
increase for Russia; C3 products contribute the highest, 
followed by C1 and C2 with the lowest emissions.

Employing an LMDI index decomposition model from 
2010 to 2019, influencing factors, including trade scale, 
structure, and carbon emission intensity, are examined. 
Results indicate: (1) Export scale is the primary factor 
increasing embodied carbon emissions for both countries, 
with structural effects playing a secondary role for China 
and intensity effects being the smallest. Russia exhibits 
intensity effects as the second-most significant factor. 
(2) By industry, the intensity effect minimally promotes 
embodied carbon emissions for C1 products in both 
countries, while mainly restraining emissions for the 
other categories. Structural effects shift from restraint 
to promotion in the export trade of all three categories. 
Below are some policy recommendations:

Mitigating the scale effect is key to reducing embodied 
carbon in Sino-Russian agricultural trade. Instead of 
cutting trade scale, prioritize carbon emission reduction. 
For low-carbon trade, Chinese exporters should enhance 
energy efficiency, embrace clean energy, and receive 
government support. Global knowledge transfer in clean 
energy technologies is crucial.

To tackle rising carbon emissions from expanding 
trade, focus on agricultural decarbonization. Implement 

low-carbon technologies, raise awareness, and support 
government-led initiatives for sustainable practices in 
China.

For reduced embodied carbon in China’s agricultural 
exports to Russia, improve the trade structure. Diversify 
markets, leverage opportunities like RCEP, FTA, and 
“Belt and Road”, and enhance trade infrastructure for 
stability.

Fostering a sustainable, low-carbon model requires 
policy alignment, adoption of international emission 
standards, and refined carbon accounting. Expanding 
Sino-Russian agricultural trade is vital amid the Russia-
Ukraine conflict for stability and effective carbon 
management.

Although this paper provides a detailed empirical 
analysis of the embodied carbon in Sino-Russian trade 
in agricultural products, the years studied are relatively 
limited due to data constraints, and future studies can 
further increase the sample size.
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